In an instance of the weighted Nash Social Welfare problem, we are given a set of $m$ indivisible items, $\mathscr{G}$, and $n$ agents, $\mathscr{A}$, where each agent $i \in \mathscr{A}$ has a valuation $v_{ij}\geq 0$ for each item $j\in \mathscr{G}$. In addition, every agent $i$ has a non-negative weight $w_i$ such that the weights collectively sum up to $1$. The goal is to find an assignment $\sigma:\mathscr{G}\rightarrow \mathscr{A}$ that maximizes $\prod_{i\in \mathscr{A}} \left(\sum_{j\in \sigma^{-1}(i)} v_{ij}\right)^{w_i}$, the product of the weighted valuations of the players. When all the weights equal $\frac1n$, the problem reduces to the classical Nash Social Welfare problem, which has recently received much attention. In this work, we present a $5\cdot\exp\left(2\cdot D_{\text{KL}}(\mathbf{w}\, ||\, \frac{\vec{\mathbf{1}}}{n})\right) = 5\cdot\exp\left(2\log{n} + 2\sum_{i=1}^n w_i \log{w_i}\right)$-approximation algorithm for the weighted Nash Social Welfare problem, where $D_{\text{KL}}(\mathbf{w}\, ||\, \frac{\vec{\mathbf{1}}}{n})$ denotes the KL-divergence between the distribution induced by $\mathbf{w}$ and the uniform distribution on $[n]$. We show a novel connection between the convex programming relaxations for the unweighted variant of Nash Social Welfare presented in \cite{cole2017convex, anari2017nash}, and generalize the programs to two different mathematical programs for the weighted case. The first program is convex and is necessary for computational efficiency, while the second program is a non-convex relaxation that can be rounded efficiently. The approximation factor derives from the difference in the objective values of the convex and non-convex relaxation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月16日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员