Reciprocal recommender system (RRS), considering a two-way matching between two parties, has been widely applied in online platforms like online dating and recruitment. Existing RRS models mainly capture static user preferences, which have neglected the evolving user tastes and the dynamic matching relation between the two parties. Although dynamic user modeling has been well-studied in sequential recommender systems, existing solutions are developed in a user-oriented manner. Therefore, it is non-trivial to adapt sequential recommendation algorithms to reciprocal recommendation. In this paper, we formulate RRS as a distinctive sequence matching task, and further propose a new approach ReSeq for RRS, which is short for Reciprocal Sequential recommendation. To capture dual-perspective matching, we propose to learn fine-grained sequence similarities by co-attention mechanism across different time steps. Further, to improve the inference efficiency, we introduce the self-distillation technique to distill knowledge from the fine-grained matching module into the more efficient student module. In the deployment stage, only the efficient student module is used, greatly speeding up the similarity computation. Extensive experiments on five real-world datasets from two scenarios demonstrate the effectiveness and efficiency of the proposed method. Our code is available at https://github.com/RUCAIBox/ReSeq/.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Disentangled Representation Learning
Arxiv
0+阅读 · 2023年8月16日
Arxiv
0+阅读 · 2023年8月15日
Arxiv
0+阅读 · 2023年8月15日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Disentangled Representation Learning
Arxiv
0+阅读 · 2023年8月16日
Arxiv
0+阅读 · 2023年8月15日
Arxiv
0+阅读 · 2023年8月15日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员