In this work, we propose a Semi-supervised Triply Robust Inductive transFer LEarning (STRIFLE) approach, which integrates heterogeneous data from a label-rich source population and a label-scarce target population and utilizes a large amount of unlabeled data simultaneously to improve the learning accuracy in the target population. Specifically, we consider a high dimensional covariate shift setting and employ two nuisance models, a density ratio model and an imputation model, to combine transfer learning and surrogate-assisted semi-supervised learning strategies effectively and achieve triple robustness. While the STRIFLE approach assumes the target and source populations to share the same conditional distribution of outcome Y given both the surrogate features S and predictors X, it allows the true underlying model of Y|X to differ between the two populations due to the potential covariate shift in S and X. Different from double robustness, even if both nuisance models are misspecified or the distribution of Y|(S, X) is not the same between the two populations, the triply robust STRIFLE estimator can still partially use the source population when the shifted source population and the target population share enough similarities. Moreover, it is guaranteed to be no worse than the target-only surrogate-assisted semi-supervised estimator with an additional error term from transferability detection. These desirable properties of our estimator are established theoretically and verified in finite samples via extensive simulation studies. We utilize the STRIFLE estimator to train a Type II diabetes polygenic risk prediction model for the African American target population by transferring knowledge from electronic health records linked genomic data observed in a larger European source population.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月20日
Arxiv
0+阅读 · 2024年11月19日
Arxiv
21+阅读 · 2019年3月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员