Physics-informed neural networks (PINNs), rooted in deep learning, have emerged as a promising approach for solving partial differential equations (PDEs). By embedding the physical information described by PDEs into feedforward neural networks, PINNs are trained as surrogate models to approximate solutions without the need for label data. Nevertheless, even though PINNs have shown remarkable performance, they can face difficulties, especially when dealing with equations featuring rapidly changing solutions. These difficulties encompass slow convergence, susceptibility to becoming trapped in local minima, and reduced solution accuracy. To address these issues, we propose a binary structured physics-informed neural network (BsPINN) framework, which employs binary structured neural network (BsNN) as the neural network component. By leveraging a binary structure that reduces inter-neuron connections compared to fully connected neural networks, BsPINNs excel in capturing the local features of solutions more effectively and efficiently. These features are particularly crucial for learning the rapidly changing in the nature of solutions. In a series of numerical experiments solving Burgers equation, Euler equation, Helmholtz equation, and high-dimension Poisson equation, BsPINNs exhibit superior convergence speed and heightened accuracy compared to PINNs. From these experiments, we discover that BsPINNs resolve the issues caused by increased hidden layers in PINNs resulting in over-smoothing, and prevent the decline in accuracy due to non-smoothness of PDEs solutions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员