Pedestrian detection plays a critical role in autonomous driving (AD), where ensuring safety and reliability is important. While many detection models aim to reduce miss-rates and handle challenges such as occlusion and long-range recognition, fairness remains an underexplored yet equally important concern. In this work, we systematically investigate how variations in the pedestrian pose--including leg status, elbow status, and body orientation--as well as individual joint occlusions, affect detection performance. We evaluate five pedestrian-specific detectors (F2DNet, MGAN, ALFNet, CSP, and Cascade R-CNN) alongside three general-purpose models (YOLOv12 variants) on the EuroCity Persons Dense Pose (ECP-DP) dataset. Fairness is quantified using the Equal Opportunity Difference (EOD) metric across various confidence thresholds. To assess statistical significance and robustness, we apply the Z-test. Our findings highlight biases against pedestrians with parallel legs, straight elbows, and lateral views. Occlusion of lower body joints has a more negative impact on the detection rate compared to the upper body and head. Cascade R-CNN achieves the lowest overall miss-rate and exhibits the smallest bias across all attributes. To the best of our knowledge, this is the first comprehensive pose- and occlusion-aware fairness evaluation in pedestrian detection for AD.
翻译:暂无翻译