A method is presented to include irregular domain boundaries in a geometric multigrid solver. Dirichlet boundary conditions can be imposed on an irregular boundary defined by a level set function. Our implementation employs quadtree/octree grids with adaptive refinement, a cell-centered discretization and pointwise smoothing. Boundary locations are determined at a subgrid resolution by performing line searches. For grid blocks near the interface, custom operator stencils are stored that take the interface into account. For grid block away from boundaries, a standard second-order accurate discretization is used. The convergence properties, robustness and computational cost of the method are illustrated with several test cases.


翻译:提出了一种方法,将非正常的域边界纳入一个几何多电网求解器中。可以在一个定级函数界定的非正常边界上强加drichlet边界条件。我们的实施采用有适应性改进、以细胞为中心的离散和点平滑的四树/树网格。边界点通过进行线搜索以亚格网分辨率确定。对于接口附近的格格区块,则储存将界面考虑在内的自定义操作器电线板。对于远离边界的格子阻塞,则使用标准的二阶准确离散。方法的趋同性、稳健性和计算成本用几个测试案例加以说明。

0
下载
关闭预览

相关内容

抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员