We demonstrate self-supervised pretraining (SSP) is a scalable solution to deep learning with differential privacy (DP) regardless of the size of available public datasets in image classification. When facing the lack of public datasets, we show the features generated by SSP on only one single image enable a private classifier to obtain much better utility than the non-learned handcrafted features under the same privacy budget. When a moderate or large size public dataset is available, the features produced by SSP greatly outperform the features trained with labels on various complex private datasets under the same private budget. We also compared multiple DP-enabled training frameworks to train a private classifier on the features generated by SSP. Finally, we report a non-trivial utility 25.3\% of a private ImageNet-1K dataset when $\epsilon=3$.


翻译:我们展示自我监督的训练前(SSP)是用不同隐私(DP)进行深层次学习的一种可伸缩的解决方案,不管在图像分类中现有公共数据集的大小如何。在面对缺少公共数据集的情况下,我们展示了SSP在单一图像上产生的特征,使私人分类器在同一个隐私预算下比非手工制作的特征获得更好的使用。当有中大型公共数据集时,SSP产生的特征大大优于在相同私人预算下用各种复杂的私人数据集标签培训的特征。我们还比较了多个基于DP的训练框架,以便对私营分类器进行关于SSP所产生特征的培训。最后,我们报告了在$\epsilon=3美元的情况下,一个私人图像Net-1K数据集的非三维功能25.3 ⁇ 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员