Personalized Conversational Information Retrieval (CIR) has seen rapid progress in recent years, driven by the development of Large Language Models (LLMs). Personalized CIR aims to enhance document retrieval by leveraging user-specific information, such as preferences, knowledge, or constraints, to tailor responses to individual needs. A key resource for this task is the TREC iKAT 2023 dataset, designed to evaluate personalization in CIR pipelines. Building on this resource, Mo et al. explored several strategies for incorporating Personal Textual Knowledge Bases (PTKB) into LLM-based query reformulation. Their findings suggested that personalization from PTKBs could be detrimental and that human annotations were often noisy. However, these conclusions were based on single-run experiments using the GPT-3.5 Turbo model, raising concerns about output variability and repeatability. In this reproducibility study, we rigorously reproduce and extend their work, focusing on LLM output variability and model generalization. We apply the original methods to the new TREC iKAT 2024 dataset and evaluate a diverse range of models, including Llama (1B-70B), Qwen-7B, GPT-4o-mini. Our results show that human-selected PTKBs consistently enhance retrieval performance, while LLM-based selection methods do not reliably outperform manual choices. We further compare variance across datasets and observe higher variability on iKAT than on CAsT, highlighting the challenges of evaluating personalized CIR. Notably, recall-oriented metrics exhibit lower variance than precision-oriented ones, a critical insight for first-stage retrievers. Finally, we underscore the need for multi-run evaluations and variance reporting when assessing LLM-based CIR systems. By broadening evaluation across models, datasets, and metrics, our study contributes to more robust and generalizable practices for personalized CIR.
翻译:暂无翻译