This paper proposes novel high-order accurate discontinuous Galerkin (DG) schemes for the one- and two-dimensional ten-moment Gaussian closure equations with source terms defined by a known potential function. Our DG schemes exhibit the desirable capability of being well-balanced (WB) for a known hydrostatic equilibrium state while simultaneously preserving positive density and positive-definite anisotropic pressure tensor. The well-balancedness is built on carefully modifying the solution states in the Harten-Lax-van Leer-contact (HLLC) flux, and appropriate reformulation and discretization of the source terms. Our novel modification technique overcomes the difficulties posed by the anisotropic effects, maintains the high-order accuracy, and ensures that the modified solution state remains within the physically admissible state set. Positivity-preserving analyses of our WB DG schemes are conducted by using several key properties of the admissible state set, the HLLC flux and the HLLC solver, as well as the geometric quasilinearization (GQL) approach in [Wu & Shu, SIAM Review, 65: 1031-1073, 2023], which was originally applied to analyze the admissible state set and physical-constraints-preserving schemes for the relativistic magnetohydrodynamics in [Wu & Tang, M3AS, 27: 1871-1928, 2017], to address the difficulties arising from the nonlinear constraints on pressure tensor. Moreover, the proposed WB DG schemes satisfy the weak positivity for the cell averages, implying the use of a scaling limiter to enforce the physical admissibility of the DG solution polynomials at certain points of interest. Extensive numerical experiments are conducted to validate the preservation of equilibrium states, accuracy in capturing small perturbations to such states, robustness in solving problems involving low density or low pressure, and high resolution for both smooth and discontinuous solutions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员