Increasing heterogeneity in HPC architectures and compiler advancements have led to OpenMP being frequently used to enable computations on heterogeneous devices. However, the efficient movement of data on heterogeneous computing platforms is crucial for achieving high utilization. The implicit OpenMP data-mapping rules often result in redundant data transfer, which can be a bottleneck for program performance. Programmers must explicitly map data between the host and connected accelerator devices to achieve efficient data movement. For this, OpenMP offers the target data and target update constructs. Ensuring efficient data transfer requires programmers to reason about complex data flow. This can be a laborious and error-prone process since the programmer must keep a mental model of data validity and lifetime spanning multiple data environments. Any automated analysis should maximize data reuse, minimize data transfer, and must consider control flow and context from function call sites, making the analysis interprocedural and context sensitive. In this paper, we present a static analysis tool, OMPDart (OpenMP DAta Reduction Tool), for OpenMP programs that models data dependencies between host and device regions and applies source code transformations to achieve efficient data transfer. The analysis is based on a hybrid data structure that joins an Abstract Syntax Tree (AST) with a Control Flow Graph (CFG). Our evaluations on nine HPC benchmarks demonstrate that OMPDart is capable of generating effective data mapping constructs that substantially reduce data transfer between host and device. OMPDart helps reduce data transfers by 85% and improves runtime performance by 1.6x over an expert-defined implementation of LULESH 2.0.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员