This paper introduces a novel formulation of the clustering problem, namely the Minimum Sum-of-Squares Clustering of Infinitely Tall Data (MSSC-ITD), and presents HPClust, an innovative set of hybrid parallel approaches for its effective solution. By utilizing modern high-performance computing techniques, HPClust enhances key clustering metrics: effectiveness, computational efficiency, and scalability. In contrast to vanilla data parallelism, which only accelerates processing time through the MapReduce framework, our approach unlocks superior performance by leveraging the multi-strategy competitive-cooperative parallelism and intricate properties of the objective function landscape. Unlike other available algorithms that struggle to scale, our algorithm is inherently parallel in nature, improving solution quality through increased scalability and parallelism, and outperforming even advanced algorithms designed for small and medium-sized datasets. Our evaluation of HPClust, featuring four parallel strategies, demonstrates its superiority over traditional and cutting-edge methods by offering better performance in the key metrics. These results also show that parallel processing not only enhances the clustering efficiency, but the accuracy as well. Additionally, we explore the balance between computational efficiency and clustering quality, providing insights into optimal parallel strategies based on dataset specifics and resource availability. This research advances our understanding of parallelism in clustering algorithms, demonstrating that a judicious hybridization of advanced parallel approaches yields optimal results for MSSC-ITD. Experiments on synthetic data further confirm HPClust's exceptional scalability and robustness to noise.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员