Direct Preference Optimization (DPO) is an efficient alternative to reinforcement learning from human feedback (RLHF), yet it typically assumes hard binary labels and pairwise comparisons. Such assumptions can be brittle under noisy or distribution-shifted supervision. We present Anchored Direct Preference Optimization (ADPO), which (i) incorporates soft preference probabilities, (ii) aligns policy updates through reference anchoring that induces an implicit trust region, and (iii) extends to listwise learning via Plackett-Luce modeling. In controlled synthetic setups covering 12 scenarios (4 noise types x 3 severities) and 3 model scales, ADPO exhibits relative improvements ranging from 12% to 79% over a standard DPO baseline (10-seed means; 95% CIs in the Appendix). Hard labels tend to fare better under severe noise, whereas soft labels yield better calibration under distribution shift; listwise variants achieve the highest WinMass (expected probability mass on the ground-truth best item) in 9/12 scenarios. Larger models amplify ADPO's benefits (0.718 vs. 0.416 at hidden=256), suggesting that anchoring acts as an effective trust-region regularizer. We release code and configurations to facilitate reproducibility.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年6月13日
Arxiv
15+阅读 · 2021年11月19日
Arxiv
12+阅读 · 2021年8月19日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
69+阅读 · 2022年6月13日
Arxiv
15+阅读 · 2021年11月19日
Arxiv
12+阅读 · 2021年8月19日
Arxiv
15+阅读 · 2018年6月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员