We establish that a large, flexible class of long, high redundancy error correcting codes can be efficiently and accurately decoded with guessing random additive noise decoding (GRAND). Performance evaluation demonstrates that it is possible to construct simple product codes with lengths of approximately 200 to 4000 bits and rates between 0.2 and 0.8 that outperform low-density parity-check (LDPC) codes from the 5G New Radio standard in both AWGN and fading channels. The concatenated structure enables many desirable features, including: low-complexity hardware-friendly encoding and decoding; significant flexibility in length and rate through modularity; and high levels of parallelism in encoding and decoding that enable low latency. Central is the development of a method through which any soft-input (SI) GRAND algorithm can provide soft-output (SO) in the form of an accurate a-posteriori estimate of the likelihood that a decoding is correct or, in the case of list decoding, the likelihood that each element of the list is correct. The distinguishing feature of soft-output GRAND (SOGRAND) is the provision of an estimate that the correct decoding has not been found, even when providing a single decoding. That per-block SO can be converted into accurate per-bit SO by a weighted sum that includes a term for the SI. Implementing SOGRAND adds negligible computation and memory to the existing decoding process, and using it results in a practical, low-latency alternative to LDPC codes.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员