In recent years, researchers have made significant progress in devising reinforcement-learning algorithms for optimizing linear temporal logic (LTL) objectives and LTL-like objectives. Despite these advancements, there are fundamental limitations to how well this problem can be solved. Previous studies have alluded to this fact but have not examined it in depth. In this paper, we address the tractability of reinforcement learning for general LTL objectives from a theoretical perspective. We formalize the problem under the probably approximately correct learning in Markov decision processes (PAC-MDP) framework, a standard framework for measuring sample complexity in reinforcement learning. In this formalization, we prove that the optimal policy for any LTL formula is PAC-MDP-learnable if and only if the formula is in the most limited class in the LTL hierarchy, consisting of formulas that are decidable within a finite horizon. Practically, our result implies that it is impossible for a reinforcement-learning algorithm to obtain a PAC-MDP guarantee on the performance of its learned policy after finitely many interactions with an unconstrained environment for LTL objectives that are not decidable within a finite horizon.


翻译:近年来,研究人员在设计优化线性时间逻辑(LTL)目标和LTL类似目标的强化学习算法方面取得了重大进展。尽管取得了这些进步,但对于这一问题的解决有多好,仍然存在着根本性的局限性。以前的研究已经提到这一事实,但没有对此进行深入的研究。在本文件中,我们从理论角度探讨通用LT目标强化学习的可感性。我们在Markov决策程序(PAC-MDP)框架(衡量强化学习的抽样复杂性的标准框架)中将问题正式化。在这个正式化中,我们证明任何LTL公式的最佳政策是PAC-MDP-leanern,如果而且只有在LTLT等级中公式属于最有限的类别,包括可在有限范围内消减的公式。实际上,我们的结果意味着,在与LTLT目标的不受限制的环境进行有限的许多互动之后,不可能获得PAC-MDP对其学习政策的绩效的保证。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
Top
微信扫码咨询专知VIP会员