Panoramic Narrative Grounding (PNG) is an emerging visual grounding task that aims to segment visual objects in images based on dense narrative captions. The current state-of-the-art methods first refine the representation of phrase by aggregating the most similar $k$ image pixels, and then match the refined text representations with the pixels of the image feature map to generate segmentation results. However, simply aggregating sampled image features ignores the contextual information, which can lead to phrase-to-pixel mis-match. In this paper, we propose a novel learning framework called Deformable Attention Refined Matching Network (DRMN), whose main idea is to bring deformable attention in the iterative process of feature learning to incorporate essential context information of different scales of pixels. DRMN iteratively re-encodes pixels with the deformable attention network after updating the feature representation of the top-$k$ most similar pixels. As such, DRMN can lead to accurate yet discriminative pixel representations, purify the top-$k$ most similar pixels, and consequently alleviate the phrase-to-pixel mis-match substantially.Experimental results show that our novel design significantly improves the matching results between text phrases and image pixels. Concretely, DRMN achieves new state-of-the-art performance on the PNG benchmark with an average recall improvement 3.5%. The codes are available in: https://github.com/JaMesLiMers/DRMN.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Deep Learning for Generic Object Detection: A Survey
Arxiv
14+阅读 · 2018年9月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员