The logic of bunched implications (BI) can be seen as the free combination of intuitionistic propositional logic (IPL) and intuitionistic multiplicative linear logic (IMLL). We present here a base-extension semantics (B-eS) for BI in the spirit of Sandqvist's B-eS for IPL, deferring an analysis of proof-theoretic validity, in the sense of Dummett and Prawitz, to another occasion. Essential to BI's formulation in proof-theoretic terms is the concept of a `bunch' of hypotheses that is familiar from relevance logic. Bunches amount to trees whose internal vertices are labelled with either the IMLL context-former or the IPL context-former and whose leaves are labelled with propositions or units for the context-formers. This structure presents significant technical challenges in setting up a base-extension semantics for BI. Our approach starts from the B-eS for IPL and the B-eS for IMLL and provides a systematic combination. Such a combination requires that base rules carry bunched structure, and so requires a more complex notion of derivability in a base and a correspondingly richer notion of support in a base. One reason why BI is a substructural logic of interest is that the `resource interpretation' of its semantics, given in terms of sharing and separation and which gives rise to Separation Logic in the field of program verification, is quite distinct from the `number-of-uses' reading of the propositions of linear logic as resources. This resource reading of BI provides useful intuitions in the formulation of its proof-theoretic semantics. We discuss a simple example of the use of the given B-eS in security modelling.


翻译:暂无翻译

0
下载
关闭预览

相关内容

信息处理快报(IPL)致力于快速发表对信息处理的简短贡献。注重于原创研究文章,并且 这些文章着重于信息处理和计算方面,包括在计算机理论科学领域广为人知的工作以及高质量实验论文。 官网地址:http://dblp.uni-trier.de/db/journals/ipl/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员