Recent advances in computational pathology have led to the emergence of numerous foundation models. These models typically rely on general-purpose encoders with multi-instance learning for whole slide image (WSI) classification or apply multimodal approaches to generate reports directly from images. However, these models cannot emulate the diagnostic approach of pathologists, who systematically examine slides at low magnification to obtain an overview before progressively zooming in on suspicious regions to formulate comprehensive diagnoses. Instead, existing models directly output final diagnoses without revealing the underlying reasoning process. To address this gap, we introduce CPathAgent, an innovative agent-based approach that mimics pathologists' diagnostic workflow by autonomously navigating across WSI based on observed visual features, thereby generating substantially more transparent and interpretable diagnostic summaries. To achieve this, we develop a multi-stage training strategy that unifies patch-level, region-level, and WSI-level capabilities within a single model, which is essential for replicating how pathologists understand and reason across diverse image scales. Additionally, we construct PathMMU-HR2, the first expert-validated benchmark for large region analysis. This represents a critical intermediate scale between patches and whole slides, reflecting a key clinical reality where pathologists typically examine several key large regions rather than entire slides at once. Extensive experiments demonstrate that CPathAgent consistently outperforms existing approaches across benchmarks at three different image scales, validating the effectiveness of our agent-based diagnostic approach and highlighting a promising direction for computational pathology.
翻译:暂无翻译