Newly developed interfaces for Python, Dask, and PySpark enable the use of Alchemist with additional data analysis frameworks. We also briefly discuss the combination of Alchemist with RLlib, an increasingly popular library for reinforcement learning, and consider the benefits of leveraging HPC simulations in reinforcement learning. Finally, since data transfer between the client applications and Alchemist are the main overhead Alchemist encounters, we give a qualitative assessment of these transfer times with respect to different~factors.


翻译:Python、Dask 和 PySpark 的新开发界面使得能用更多的数据分析框架来利用炼金师。 我们还简要地讨论了炼金师与RLlib(一个越来越受欢迎的强化学习图书馆)的结合,并审议了利用HPC模拟来强化学习的好处。 最后,由于客户应用程序和炼金师之间的数据传输是替代炼金师的主要间接遭遇,我们对这些不同的叶源物的转移时间进行了定性评估。

0
下载
关闭预览

相关内容

Dask是一个并行计算库,能在集群中进行分布式计算,能以一种更方便简洁的方式处理大数据量,与Spark这些大数据处理框架相比较,Dask更轻。Dask更侧重与其他框架,如:Numpy,Pandas,Scikit-learning相结合,从而使其能更加方便进行分布式并行计算。
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员