Softwarization and virtualization in 5G and beyond necessitate thorough testing to ensure the security of critical infrastructure and networks, requiring the identification of vulnerabilities and unintended emergent behaviors from protocol designs to their software stack implementation. To provide an efficient and comprehensive solution, we propose a novel and first-of-its-kind approach that connects the strengths and coverage of formal and fuzzing methods to efficiently detect vulnerabilities across protocol logic and implementation stacks in a hierarchical manner. We design and implement formal verification to detect attack traces in critical protocols, which are used to guide subsequent fuzz testing and incorporate feedback from fuzz testing to broaden the scope of formal verification. This innovative approach significantly improves efficiency and enables the auto-discovery of vulnerabilities and unintended emergent behaviors from the 3GPP protocols to software stacks. Following this approach, we discover one identifier leakage model, one DoS attack model, and two eavesdrop attack models due to the absence of rudimentary MITM protection within the protocol, despite the existence of a Transport Layer Security (TLS) solution to this issue for over a decade. More remarkably, guided by the identified formal analysis and attack models, we exploit 61 vulnerabilities using fuzz testing demonstrated on srsRAN platforms. These identified vulnerabilities contribute to fortifying protocol-level assumptions and refining the search space. Compared to state-of-the-art fuzz testing, our united formal and fuzzing methodology enables auto-assurance by systematically discovering vulnerabilities. It significantly reduces computational complexity, transforming the non-practical exponential growth in computational cost into linear growth.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员