In image reconstruction, an accurate quantification of uncertainty is of great importance for informed decision making. Here, the Bayesian approach to inverse problems can be used: the image is represented through a random function that incorporates prior information which is then updated through Bayes' formula. However, finding a prior is difficult, as images often exhibit non-stationary effects and multi-scale behaviour. Thus, usual Gaussian process priors are not suitable. Deep Gaussian processes, on the other hand, encode non-stationary behaviour in a natural way through their hierarchical structure. To apply Bayes' formula, one commonly employs a Markov chain Monte Carlo (MCMC) method. In the case of deep Gaussian processes, sampling is especially challenging in high dimensions: the associated covariance matrices are large, dense, and changing from sample to sample. A popular strategy towards decreasing computational complexity is to view Gaussian processes as the solutions to a fractional stochastic partial differential equation (SPDE). In this work, we investigate efficient computational strategies to solve the fractional SPDEs occurring in deep Gaussian process sampling, as well as MCMC algorithms to sample from the posterior. Namely, we combine rational approximation and a determinant-free sampling approach to achieve sampling via the fractional SPDE. We test our techniques in standard Bayesian image reconstruction problems: upsampling, edge detection, and computed tomography. In these examples, we show that choosing a non-stationary prior such as the deep GP over a stationary GP can improve the reconstruction. Moreover, our approach enables us to compare results for a range of fractional and non-fractional regularity parameter values.


翻译:暂无翻译

1
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
11+阅读 · 2018年5月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
15+阅读 · 2022年5月14日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
11+阅读 · 2018年5月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员