We develop a unified theoretical framework for neural architectures whose internal representations evolve as stationary states of dissipative Schr\"odinger-type dynamics on learned latent graphs. Each layer is defined by a fixed-point Schr\"odinger-type equation depending on a weighted Laplacian encoding latent geometry and a convex local potential. We prove existence, uniqueness, and smooth dependence of equilibria, and show that the dynamics are equivalent under the Bloch map to norm-preserving Landau--Lifshitz flows. Training over graph weights and topology is formulated as stochastic optimization on a stratified moduli space of graphs equipped with a natural K\"{a}hler--Hessian metric, ensuring convergence and differentiability across strata. We derive generalization bounds -- PAC-Bayes, stability, and Rademacher complexity -- in terms of geometric quantities such as edge count, maximal degree, and Gromov--Hausdorff distortion, establishing that sparsity and geometric regularity control capacity. Feed-forward composition of stationary layers is proven equivalent to a single global stationary diffusion on a supra-graph; backpropagation is its adjoint stationary system. Finally, directed and vector-valued extensions are represented as sheaf Laplacians with unitary connections, unifying scalar graph, directed, and sheaf-based architectures. The resulting model class provides a compact, geometrically interpretable, and analytically tractable foundation for learning latent graph geometry via fixed-point Schr\"odinger-type activations.
翻译:暂无翻译