The Eigenfactor is a journal metric, which was developed by Bergstrom and his colleagues at the University of Washington. They invented the Eigenfactor as a response to the criticism against the use of simple citation counts. The Eigenfactor makes use of the network structure of citations, i.e. citations between journals, and establishes the importance, influence or impact of a journal based on its location in a network of journals. The importance is defined based on the number of citations between journals. As such, the Eigenfactor algorithm is based on Eigenvector centrality. While journal-based metrics have been criticized, the Eigenfactor has also been suggested as an alternative in the widely used San Francisco Declaration on Research Assessment (DORA).


翻译:“Eigenfactor”是Bergstrom及其在华盛顿大学的同事开发的期刊指标,他们发明了“Eigenfactor”,作为对批评使用简单的引用计数的批评的回应。“Eigenfactor”利用了引用的网络结构,即期刊之间的引文结构,根据期刊在期刊网络中的位置,确定了期刊的重要性、影响或影响。《Eigenfactor》的重要性是根据期刊之间的引文数量界定的。因此,“Eigenfactor”算法以“Eigenvictor中心”为基础。尽管以日记为基础的计量标准受到批评,但“Eigenfactor”也作为广泛使用的《旧金山研究评估宣言》(DORA)中的一种替代方法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Factor Graph Attention
Arxiv
6+阅读 · 2019年4月11日
VIP会员
相关VIP内容
相关资讯
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员