In this work, we introduce the pattern-domain pilot design paradigm based on a "superposition of orthogonal-building-blocks" with significantly larger contention space to enhance the massive machine-type communications (mMTC) random access (RA) performance in massive multiple-input multiple-output (MIMO) systems.Specifically, the pattern-domain pilot is constructed based on the superposition of $L$ cyclically-shifted Zadoff-Chu (ZC) sequences. The pattern-domain pilots exhibit zero correlation values between non-colliding patterns from the same root and low correlation values between patterns from different roots. The increased contention space, i.e., from N to $\binom{N}{L}$, where $\binom{N}{L}$ denotes the number of all L-combinations of a set N, and low correlation valueslead to a significantly lower pilot collision probability without compromising excessively on channel estimation performance for mMTC RA in massive MIMO systems.We present the framework and analysis of the RA success probability of the pattern-domain based scheme with massive MIMO systems.Numerical results demonstrate that the proposed pattern division random access (PDRA) scheme achieves an appreciable performance gain over the conventional one,while preserving the existing physical layer virtually unchanged. The extension of the "superposition of orthogonal-building-blocks" scheme to "superposition of quasi-orthogonal-building-blocks" is straightforward.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员