In matched observational studies, the inferred causal conclusions pretending that matching has taken into account all confounding can be sensitive to unmeasured confounding. In such cases, a sensitivity analysis is often conducted, which investigates whether the observed association between treatment and outcome is due to effects caused by the treatment or it is due to hidden confounding. In general, a sensitivity analysis tries to infer the minimum amount of hidden biases needed in order to explain away the observed association between treatment and outcome, assuming that the treatment has no effect. If the needed bias is large, then the treatment is likely to have significant effects. The Rosenbaum sensitivity analysis is a modern approach for conducting sensitivity analysis for matched observational studies. It investigates what magnitude the maximum of the hidden biases from all matched sets needs to be in order to explain away the observed association, assuming that the treatment has no effect. However, such a sensitivity analysis can be overly conservative and pessimistic, especially when the investigators believe that some matched sets may have exceptionally large hidden biases. In this paper, we generalize Rosenbaum's framework to conduct sensitivity analysis on quantiles of hidden biases from all matched sets, which are more robust than the maximum. Moreover, we demonstrate that the proposed sensitivity analysis on all quantiles of hidden biases is simultaneously valid and is thus a free lunch added to the conventional sensitivity analysis. The proposed approach works for general outcomes, general matched studies and general test statistics. Finally, we demonstrate that the proposed sensitivity analysis also works for bounded null hypotheses as long as the test statistic satisfies certain properties. An R package implementing the proposed method is also available online.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员