Machine learning (ML) has made BigCloneBench popular for semantic clone detection tools. However, BigCloneBench only has a few Java semantic clones. In addition, due to the design principles of how the benchmark was created, imbalance issues have been identified, including the ambiguity in the definition of semantic clones. Thus, ML-based clone detection algorithms trained on BigCloneBench may overlook semantic clones or report incorrect results. The SemanticCloneBench features Stack Overflow clones of several languages. However, it lacks samples for ML-based clone detection. There is also a marked lack of cross-language clone benchmarks. The widely used CLCDSA dataset lacks reusable examples that can't be used in real-world software systems, making it inadequate for ML-based clone detection. The OpenAI GPT-3 model has shown outstanding text production, including code generation and summarization. In this paper, we used the GPT-3 model to generate a complete benchmark for both semantic and cross-language clones. Using SemanticCloneBench's genuine language clones, we tested several prompts to see which yielded better results using GPT-3 question formulation. Then, we used NiCad to filter Type-1 and Type-2 clones from GPT-3 output. We used a GUI-assisted Clone Validator tool to manually validate all clone pairings with nine judges. Functionality testing and CloneCognition verified our benchmark has no syntactic clones. Later, we validated SourcererCC, Oreo and CLCDSA tools on our benchmark. The poor performance of these tools suggests GPTCloneBench has no syntactic clone. From 77,207 Clone pairs of SemanticCloneBench/GPT-3 output, we created a benchmark with 37,149 genuine semantic clone pairs, 19,288 false semantic pairs, and 20,770 cross-language clones across four languages (Java, C, C#, and Python).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员