In this paper we propose an efficient variance reduction approach for additive functionals of Markov chains relying on a novel discrete time martingale representation. Our approach is fully non-asymptotic and does not require the knowledge of the stationary distribution (and even any type of ergodicity) or specific structure of the underlying density. By rigorously analyzing the convergence properties of the proposed algorithm, we show that its cost-to-variance product is indeed smaller than one of the naive algorithm. The numerical performance of the new method is illustrated for the Langevin-type Markov Chain Monte Carlo (MCMC) methods.


翻译:在本文中,我们建议对Markov链链的添加功能采取有效的减少差异办法,依靠一种新的离散时间表示法。我们的办法完全不无谓,不需要了解固定分布(甚至任何类型的电子分配)或潜在密度的具体结构。我们通过严格分析提议的算法的趋同特性,表明其成本到差价产品确实小于一种天真算法。新的方法的数字性能为Langevin-type Markov链条蒙特卡洛(MCMC)方法作了说明。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员