Secure multi-party computation enables multiple mutually distrusting parties to perform computations on data without revealing the data itself, and has become one of the core technologies behind privacy-preserving machine learning. In this work, we present several improved privacy-preserving protocols for both linear and non-linear layers in machine learning. For linear layers, we present an extended beaver triple protocol for bilinear maps that significantly reduces communication of convolution layer. For non-linear layers, we introduce novel protocols for computing the sigmoid and softmax function. Both functions are essential building blocks for machine learning training of classification tasks. Our protocols are both more scalable and robust than prior constructions, and improves runtime performance by 3-17x. Finally, we introduce Morse-STF, an end-to-end privacy-preserving system for machine learning training that leverages all these improved protocols. Our system achieves a 1.8x speedup on logistic regression and 3.9-4.9x speedup on convolutional neural networks compared to prior state-of-the-art systems.


翻译:安全的多党计算使多个互不信任的各方能够在不披露数据本身的情况下进行数据计算,并已成为保护隐私机器学习的核心技术之一。 在这项工作中,我们为机器学习中的线性和非线性层提出了几项改进的隐私保护协议。对于线性层,我们为双线性图提出了一个扩大的海狸三重协议,大大降低了卷土层的通信。对于非线性层,我们引入了新的协议,用于计算浮质和软体功能。这两个功能都是机器学习分类任务培训的基本构件。我们的协议比先前的建筑更加可伸缩和坚固,并且提高了3-17x的运行时间性能。最后,我们引入了Morse-STF,一个端到端的隐私保护系统,用于利用所有这些改进后的协议进行机器学习培训。我们的系统在逻辑回归方面实现了1.8x速度,与以前的状态系统相比,共生神经网络实现了3.9-4.9x速度。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员