For $360^{\circ}$ video streaming, FoV-adaptive coding that allocates more bits for the predicted user's field of view (FoV) is an effective way to maximize the rendered video quality under the limited bandwidth. We develop a low-latency FoV-adaptive coding and streaming system for interactive applications that is robust to bandwidth variations and FoV prediction errors. To minimize the end-to-end delay and yet maximize the coding efficiency, we propose a frame-level FoV-adaptive inter-coding structure. In each frame, regions that are in or near the predicted FoV are coded using temporal and spatial prediction, while a small rotating region is coded with spatial prediction only. This rotating intra region periodically refreshes the entire frame, thereby providing robustness to both FoV prediction errors and frame losses due to transmission errors. The system adapts the sizes and rates of different regions for each video segment to maximize the rendered video quality under the predicted bandwidth constraint. Integrating such frame-level FoV adaptation with temporal prediction is challenging due to the temporal variations of the FoV. We propose novel ways for modeling the influence of FoV dynamics on the quality-rate performance of temporal predictive coding.We further develop LSTM-based machine learning models to predict the user's FoV and network bandwidth.The proposed system is compared with three benchmark systems, using real-world network bandwidth traces and FoV traces, and is shown to significantly improve the rendered video quality, while achieving very low end-to-end delay and low frame-freeze probability.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月24日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员