The literature on awareness modeling includes both syntax-free and syntax-based frameworks. Heifetz, Meier \& Schipper (HMS) propose a lattice model of awareness that is syntax-free. While their lattice approach is elegant and intuitive, it precludes the simple option of relying on formal language to induce lattices, and does not explicitly distinguish uncertainty from unawareness. Contra this, the most prominent syntax-based solution, the Fagin-Halpern (FH) model, accounts for this distinction and offers a simple representation of awareness, but lacks the intuitiveness of the lattice structure. Here, we combine these two approaches by providing a lattice of Kripke models, induced by atom subset inclusion, in which uncertainty and unawareness are separate. We show our model equivalent to both HMS and FH models by defining transformations between them which preserve satisfaction of formulas of a language for explicit knowledge, and obtain completeness through our and HMS' results. Lastly, we prove that the Kripke lattice model can be shown equivalent to the FH model (when awareness is propositionally determined) also with respect to the language of the Logic of General Awareness, for which the FH model where originally proposed.


翻译:有关意识建模的文献包括不问税和基于语法的框架。 Heifetz, Meier {Schipper (HMS) 提议了一个不问税的透明意识模型。 虽然它们的平滑方法是优雅和直观的,但它排除了依赖正式语言来诱导拖车的简单选择,也没有明确区分不确定性和无知。 与此相比, 最突出的基于语法的解决方案Fagin- Halpern (FH) 模式(Fagin- Halpern) 模式(FH), 说明了这种差异, 提供了简单的认知表现, 但却缺乏拉蒂斯结构的直观性。 在这里, 我们结合了这两种方法, 提供了Kripke 模型的平坦直观和直观, 由原子子集成, 其不确定性和不知情性是分开的。 我们展示了与 HMS 和 FH 模式相等的模型的模型, 通过我们和 HMS 的结果, 我们证明 Kripke 模式的lattice 模式可以证明最初对FH 的认识, 也就是对LO 的理解。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
45+阅读 · 2020年12月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
6+阅读 · 2020年12月10日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员