Real-time systems (RTSs) are at the heart of numerous safety-critical applications. An RTS typically consists of a set of real-time tasks (the software) that execute on a multicore shared-memory platform (the hardware) following a scheduling policy. In an RTS, computing inter-core bounds, i.e., bounds separating events produced by tasks on different cores, is crucial. While efficient techniques to over-approximate such bounds exist, little has been proposed to compute their exact values. Given an RTS with a set of cores C and a set of tasks T , under partitioned fixed- priority scheduling with limited preemption, a recent work by Foughali, Hladik and Zuepke (FHZ) models tasks with affinity c (i.e., allocated to core c in C) as a Uppaal timed automata (TA) network Nc. For each core c in C, Nc integrates blocking (due to data sharing) using tight analytical formulae. Through compositional model checking, FHZ achieved a substantial gain in scalability for bounds local to a core. However, computing inter-core bounds for some events of interest E, produced by a subset of tasks TE with different affinities CE, requires model checking the parallel composition of all TA networks Nc for each c in CE, which produces a large, often intractable, state space. In this paper, we present a new scalable approach based on exact abstractions to compute exact inter-core bounds in a schedulable RTS, under the assumption that tasks in TE have distinct affinities. We develop a novel algorithm, leveraging a new query that we implement in Uppaal, that computes for each TA network Nc in NE an abstraction A(Nc) preserving the exact intervals within which events occur on c, therefore drastically reducing the state space. The scalability of our approach is demonstrated on the WATERS 2017 industrial challenge, for which we efficiently compute various types of inter-core bounds where FHZ fails to scale.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员