The scale and quality of datasets are crucial for training robust perception models. However, obtaining large-scale annotated data is both costly and time-consuming. Generative models have emerged as a powerful tool for data augmentation by synthesizing samples that adhere to desired distributions. However, current generative approaches often rely on complex post-processing or extensive fine-tuning on massive datasets to achieve satisfactory results, and they remain prone to content-position mismatches and semantic leakage. To overcome these limitations, we introduce ReCon, a novel augmentation framework that enhances the capacity of structure-controllable generative models for object detection. ReCon integrates region-guided rectification into the diffusion sampling process, using feedback from a pre-trained perception model to rectify misgenerated regions within diffusion sampling process. We further propose region-aligned cross-attention to enforce spatial-semantic alignment between image regions and their textual cues, thereby improving both semantic consistency and overall image fidelity. Extensive experiments demonstrate that ReCon substantially improve the quality and trainability of generated data, achieving consistent performance gains across various datasets, backbone architectures, and data scales. Our code is available at https://github.com/haoweiz23/ReCon .
翻译:暂无翻译