Microservice-based systems (MSS) may experience failures in various fault categories due to their complex and dynamic nature. To effectively handle failures, AIOps tools utilize trace-based anomaly detection and root cause analysis. In this paper, we propose a novel framework for few-shot abnormal trace classification for MSS. Our framework comprises two main components: (1) Multi-Head Attention Autoencoder for constructing system-specific trace representations, which enables (2) Transformer Encoder-based Model-Agnostic Meta-Learning to perform effective and efficient few-shot learning for abnormal trace classification. The proposed framework is evaluated on two representative MSS, Trainticket and OnlineBoutique, with open datasets. The results show that our framework can adapt the learned knowledge to classify new, unseen abnormal traces of novel fault categories both within the same system it was initially trained on and even in the different MSS. Within the same MSS, our framework achieves an average accuracy of 93.26\% and 85.2\% across 50 meta-testing tasks for Trainticket and OnlineBoutique, respectively, when provided with 10 instances for each task. In a cross-system context, our framework gets an average accuracy of 92.19\% and 84.77\% for the same meta-testing tasks of the respective system, also with 10 instances provided for each task. Our work demonstrates the applicability of achieving few-shot abnormal trace classification for MSS and shows how it can enable cross-system adaptability. This opens an avenue for building more generalized AIOps tools that require less system-specific data labeling for anomaly detection and root cause analysis.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员