Diabetic retinopathy grading is inherently ordinal and long-tailed, with minority stages being scarce, heterogeneous, and clinically critical to detect accurately. Conventional methods often rely on isotropic Gaussian priors and symmetric loss functions, misaligning latent representations with the task's asymmetric nature. We propose the Constrained Asymmetric Prior Wasserstein Autoencoder (CAP-WAE), a novel framework that addresses these challenges through three key innovations. Our approach employs a Wasserstein Autoencoder (WAE) that aligns its aggregate posterior with a asymmetric prior, preserving the heavy-tailed and skewed structure of minority classes. The latent space is further structured by a Margin-Aware Orthogonality and Compactness (MAOC) loss to ensure grade-ordered separability. At the supervision level, we introduce a direction-aware ordinal loss, where a lightweight head predicts asymmetric dispersions to generate soft labels that reflect clinical priorities by penalizing under-grading more severely. Stabilized by an adaptive multi-task weighting scheme, our end-to-end model requires minimal tuning. Across public DR benchmarks, CAP-WAE consistently achieves state-of-the-art Quadratic Weighted Kappa, accuracy, and macro-F1, surpassing both ordinal classification and latent generative baselines. t-SNE visualizations further reveal that our method reshapes the latent manifold into compact, grade-ordered clusters with reduced overlap.
翻译:暂无翻译