FPGA-specific DNN architectures using the native LUTs as independently trainable inference operators have been shown to achieve favorable area-accuracy and energy-accuracy tradeoffs. The first work in this area, LUTNet, exhibited state-of-the-art performance for standard DNN benchmarks. In this paper, we propose the learned optimization of such LUT-based topologies, resulting in higher-efficiency designs than via the direct use of off-the-shelf, hand-designed networks. Existing implementations of this class of architecture require the manual specification of the number of inputs per LUT, K. Choosing appropriate K a priori is challenging, and doing so at even high granularity, e.g. per layer, is a time-consuming and error-prone process that leaves FPGAs' spatial flexibility underexploited. Furthermore, prior works see LUT inputs connected randomly, which does not guarantee a good choice of network topology. To address these issues, we propose logic shrinkage, a fine-grained netlist pruning methodology enabling K to be automatically learned for every LUT in a neural network targeted for FPGA inference. By removing LUT inputs determined to be of low importance, our method increases the efficiency of the resultant accelerators. Our GPU-friendly solution to LUT input removal is capable of processing large topologies during their training with negligible slowdown. With logic shrinkage, we better the area and energy efficiency of the best-performing LUTNet implementation of the CNV network classifying CIFAR-10 by 1.54x and 1.31x, respectively, while matching its accuracy. This implementation also reaches 2.71x the area efficiency of an equally accurate, heavily pruned BNN. On ImageNet with the Bi-Real Net architecture, employment of logic shrinkage results in a post-synthesis area reduction of 2.67x vs LUTNet, allowing for implementation that was previously impossible on today's largest FPGAs.


翻译:FPGA 专用 DNN 架构使用本地本地 LUT 进行独立训练的网络精度测算, 以本地本地的 LUT 配置本地的本地的 LUT 本地的 DNN 结构, 其效率设计比直接使用现成的、 手工设计的网络友好型网络。 此类架构的现有实施要求对本地的LUT投入量的手工规格, K. 选择适当的 K a 直线式 K 具有挑战性, 甚至在高颗粒度( 如每层) 上, 展示了最先进的 DNNNNT 。 在本文中, 我们建议优化基于本地的 LUT 配置, 随机地连接LUT 的输入量, 无法保证今天的网络精选。 为了解决这些问题, 我们提议逻辑缩放, 将精细的网络节流法调法化方法, 使得我们每个智能的网络精度 的精度都能够自动地删除 IMUT 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员