Artificial intelligence (AI) is becoming increasingly more popular and can be found in workplaces and homes around the world. The decisions made by such "black box" systems are often opaque; that is, so complex as to be functionally impossible to understand. How do we ensure that these systems are behaving as desired? TrustyAI is an initiative which looks into explainable artificial intelligence (XAI) solutions to address this issue of explainability in the context of both AI models and decision services. This paper presents the TrustyAI Explainability Toolkit, a Java and Python library that provides XAI explanations of decision services and predictive models for both enterprise and data science use-cases. We describe the TrustyAI implementations and extensions to techniques such as LIME, SHAP and counterfactuals, which are benchmarked against existing implementations in a variety of experiments.


翻译:人工智能(AI)越来越受欢迎,可以在世界各地的工作场所和家庭中找到。这种“黑盒子”系统所作的决定往往不透明,因此在功能上是无法理解的。我们如何确保这些系统如愿以偿?信任AI是一项研究可解释的人工智能(XAI)解决方案的倡议,旨在解决在AI模式和决策服务方面解释性问题。本文件介绍了信任AI解释工具箱、一个为企业和数据科学使用案例提供决策服务和预测模型的Java和Python图书馆。我们介绍了信任AI实施和扩展LIME、SHAP和反事实等技术的情况,这些技术是参照各种实验中的现有实施情况加以衡量的。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
AI可解释性文献列表
专知
43+阅读 · 2019年10月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2021年8月19日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
AI可解释性文献列表
专知
43+阅读 · 2019年10月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员