The paper presents a modular approach for the estimation of a leading vehicle's velocity based on a non-intrusive stereo camera where SiamMask is used for leading vehicle tracking, Kernel Density estimate (KDE) is used to smooth the distance prediction from a disparity map, and LightGBM is used for leading vehicle velocity estimation. Our approach yields an RMSE of 0.416 which outperforms the baseline RMSE of 0.582 for the SUBARU Image Recognition Challenge


翻译:本文提出了一种基于非侵入式立体摄像头的前车速度估计模块化方法。采用 SiamMask 进行前车跟踪,采用核密度估计(KDE)对视差图距离预测进行平滑处理,采用 LightGBM 进行前车速度估计。我们的方法的 RMSE 为 0.416,优于 SUBARU 图像识别挑战的基线 RMSE 0.582。

0
下载
关闭预览

相关内容

综述 | 激光与视觉融合SLAM
计算机视觉life
18+阅读 · 2020年10月8日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
综述 | 激光与视觉融合SLAM
计算机视觉life
18+阅读 · 2020年10月8日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员