The preferential attachment (PA) model is a popular way of modeling dynamic social networks, such as collaboration networks. Assuming that the PA function takes a parametric form, we propose and study the maximum likelihood estimator of the parameter. Using a supercritical continuous-time branching process framework, we prove the almost sure consistency and asymptotic normality of this estimator. We also provide an estimator that only depends on the final snapshot of the network and prove its consistency, and its asymptotic normality under general conditions. We compare the performance of the estimators to a nonparametric estimator in a small simulation study.


翻译:优惠附加(PA)模式是模拟充满活力的社会网络,例如协作网络的一种流行方式。假设PA函数采取参数形式,我们提议并研究参数的最大可能性估计。我们使用超临界连续时间分流过程框架,证明这个估计符几乎可以肯定一致性和无症状的正常性。我们还提供了一个估计符,该估计符仅取决于网络的最后快照,并证明其一致性,以及一般条件下的无症状正常性。我们在小型模拟研究中将估计符的性能与非参数估计符作比较。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年12月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Adversarial Metric Attack for Person Re-identification
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Adversarial Metric Attack for Person Re-identification
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员