We consider the problem of locating a nearest descriptor system of prescribed reduced order to a descriptor system with large order with respect to the ${\mathcal L}_\infty$ norm. Widely employed approaches such as the balanced truncation and best Hankel norm approximation for this ${\mathcal L}_\infty$ model reduction problem are usually expensive and yield solutions that are not optimal, not even locally. We propose approaches based on the minimization of the ${\mathcal L}_\infty$ objective by means of smooth optimization techniques. As we illustrate, direct applications of smooth optimization techniques are not feasible, since the optimization techniques converge at best at a linear rate requiring too many evaluations of the costly ${\mathcal L}_\infty$-norm objective to be practical. We replace the original large-scale system with a system of smaller order that interpolates the original system at points on the imaginary axis, and minimize the ${\mathcal L}_\infty$ objective after this replacement. The smaller system is refined by interpolating at additional imaginary points determined based on the local minimizer of the ${\mathcal L}_\infty$ objective, and the optimization is repeated. We argue the framework converges at a quadratic rate under smoothness and nondegeneracy assumptions, and describe how asymptotic stability constraints on the reduced system sought can be incorporated into our approach. The numerical experiments on benchmark examples illustrate that the approach leads to locally optimal solutions to the ${\mathcal L}_\infty$ model reduction problem, and the convergence occurs quickly for descriptors systems of order a few ten thousands.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员