This article overviews how gradient flows, and discretizations thereof, are useful to design and analyze optimization and sampling algorithms. The interplay between optimization, sampling, and gradient flows is an active research area; our goal is to provide an accessible and lively introduction to some core ideas, emphasizing that gradient flows uncover the conceptual unity behind many optimization and sampling algorithms, and that they give a rich mathematical framework for their rigorous analysis.


翻译:本文概述了梯度流动及其离散性如何有助于设计和分析优化和抽样算法。 优化、抽样和梯度流动之间的相互作用是一个积极的研究领域;我们的目标是为一些核心想法提供一个无障碍和生动的介绍,强调梯度流动揭示了许多优化和抽样算法背后的概念统一性,并为严格分析这些算法提供了丰富的数学框架。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2022年4月30日
Arxiv
23+阅读 · 2021年12月19日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
13+阅读 · 2022年4月30日
Arxiv
23+阅读 · 2021年12月19日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员