We study the algorithmic complexity of partitioning the vertex set of a given (di)graph into a small number of paths. The Path Partition problem (PP) has been studied extensively, as it includes Hamiltonian Path as a special case. The natural variants where the paths are required to be either \emph{induced} (Induced Path Partition, IPP) or \emph{shortest} (Shortest Path Partition, SPP), have received much less attention. Both problems are known to be NP-complete on undirected graphs; we strengthen this by showing that they remain so even on planar bipartite directed acyclic graphs (DAGs), and that SPP remains \NP-hard on undirected bipartite graphs. When parameterized by the natural parameter ``number of paths'', both SPP and IPP are shown to be W{1}-hard on DAGs. We also show that SPP is in \XP both for DAGs and undirected graphs for the same parameter, as well as for other special subclasses of directed graphs (IPP is known to be NP-hard on undirected graphs, even for two paths). On the positive side, we show that for undirected graphs, both problems are in FPT, parameterized by neighborhood diversity. We also give an explicit algorithm for the vertex cover parameterization of PP. When considering the dual parameterization (graph order minus number of paths), all three variants, IPP, SPP and PP, are shown to be in FPT for undirected graphs. We also lift the mentioned neighborhood diversity and dual parameterization results to directed graphs; here, we need to define a proper novel notion of directed neighborhood diversity. As we also show, most of our results also transfer to the case of covering by edge-disjoint paths, and purely covering.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月19日
Arxiv
0+阅读 · 2023年10月19日
Arxiv
18+阅读 · 2022年11月21日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年10月19日
Arxiv
0+阅读 · 2023年10月19日
Arxiv
18+阅读 · 2022年11月21日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员