Event cameras offer unique advantages for facial keypoint alignment under challenging conditions, such as low light and rapid motion, due to their high temporal resolution and robustness to varying illumination. However, existing RGB facial keypoint alignment methods do not perform well on event data, and training solely on event data often leads to suboptimal performance because of its limited spatial information. Moreover, the lack of comprehensive labeled event datasets further hinders progress in this area. To address these issues, we propose a novel framework based on cross-modal fusion attention (CMFA) and self-supervised multi-event representation learning (SSMER) for event-based facial keypoint alignment. Our framework employs CMFA to integrate corresponding RGB data, guiding the model to extract robust facial features from event input images. In parallel, SSMER enables effective feature learning from unlabeled event data, overcoming spatial limitations. Extensive experiments on our real-event E-SIE dataset and a synthetic-event version of the public WFLW-V benchmark show that our approach consistently surpasses state-of-the-art methods across multiple evaluation metrics.
翻译:暂无翻译