This study examines the relationship between houselessness and recidivism among people on probation with and without behavioral health problems. The study also illustrates a new way to summarize the effect of an exposure on an outcome, the Incremental Propensity Score (IPS), which avoids pitfalls of other estimation approaches commonly used in criminology. We assessed the impact of houselessness at probation start on rearrest within one year among a cohort of people on probation (n = 2,453). We estimated IPS effects, considering general and crime-specific recidivism if subjects were more or less likely to be unhoused and assessed effect variation by psychiatric disorder status. We used a doubly robust machine learning estimator to flexibly but efficiently estimate effects. Decreasing houselessness led to a lower estimated average rate of recidivism. Dividing the odds of houselessness by ten had a significant effect when compared to multiplying the odds of houselessness by ten, corresponding to a 9% reduction in the estimated average rate of recidivism (p < 0.05). Milder interventions showed smaller, non-significant effect sizes. Stratifying by diagnoses and re-arrest type led to similar results without statistical significance. Minding limitations related to observational data and generalizability, this study supports houselessness as a risk factor for recidivism across populations with a new analytic approach. Efforts to reduce recidivism should include interventions that make houselessness less likely, such as increasing housing access. Meanwhile, efforts to establish recidivism risk factors should consider alternative effects like IPS effects to maximize validity and reduce bias.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
72+阅读 · 2022年7月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员