The Vienna Architecture Description Language (VADL) is a powerful processor description language (PDL) that enables the concise formal specification of processor architectures. By utilizing a single VADL processor specification, the VADL system exhibits the capability to automatically generate a range of artifacts necessary for rapid design space exploration. These include assemblers, compilers, linkers, functional instruction set simulators, cycle-accurate instruction set simulators, synthesizable specifications in a hardware description language, as well as test cases and documentation. One distinctive feature of VADL lies in its separation of the instruction set architecture (ISA) specification and the microarchitecture (MiA) specification. This segregation allows users the flexibility to combine various ISAs with different MiAs, providing a versatile approach to processor design. In contrast to existing PDLs, VADL's MiA specification operates at a higher level of abstraction, enhancing the clarity and simplicity of the design process. Notably, with a single ISA specification, VADL streamlines compiler generation and maintenance by eliminating the need for intricate compiler-specific knowledge. The original VADL implementation has a restricted copyright. Therefore, the open source implementation OpenVADL was started. This article introduces VADL, compares the original VADL implementation with the ongoing OpenVADL implementation, describes the generator techniques in detail and demonstrates the power of the language and the performance of the generators in an empirical evaluation. The evaluation shows the expressiveness and conciseness of VADL and the efficiency of the generated artifacts.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
27+阅读 · 2021年11月11日
Arxiv
12+阅读 · 2020年12月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员