We study the approximation properties of shallow neural networks whose activation function is defined as the flow map of a neural ordinary differential equation (neural ODE) at the final time of the integration interval. We prove the universal approximation property (UAP) of such shallow neural networks in the space of continuous functions. Furthermore, we investigate the approximation properties of shallow neural networks whose parameters satisfy specific constraints. In particular, we constrain the Lipschitz constant of the neural ODE's flow map and the norms of the weights to increase the network's stability. We prove that the UAP holds if we consider either constraint independently. When both are enforced, there is a loss of expressiveness, and we derive approximation bounds that quantify how accurately such a constrained network can approximate a continuous function.
翻译:暂无翻译