We consider two-player games over finite graphs in which both players are restricted by fairness constraints on their moves. Given a two player game graph $G=(V,E)$ and a set of fair moves $E_f\subseteq E$ a player is said to play "fair" in $G$ if they choose an edge $e \in E_f$ infinitely often whenever the source vertex of $e$ is visited infinitely often. Otherwise, they play "unfair". We equip such games with two $\omega$-regular winning conditions $\alpha$ and $\beta$ deciding the winner of mutually fair and mutually unfair plays, respectively. Whenever one player plays fair and the other plays unfair, the fairly playing player wins the game. The resulting games are called "fair $\alpha/\beta$ games". We formalize fair $\alpha/\beta$ games and show that they are determined. For fair parity/parity games, i.e., fair $\alpha/\beta$ games where $\alpha$ and $\beta$ are given each by a parity condition over $G$, we provide a polynomial reduction to (normal) parity games via a gadget construction inspired by the reduction of stochastic parity games to parity games. We further give a direct symbolic fixpoint algorithm to solve fair parity/parity games. On a conceptual level, we illustrate the translation between the gadget-based reduction and the direct symbolic algorithm which uncovers the underlying similarities of solution algorithms for fair and stochastic parity games, as well as for the recently considered class of fair games where only one player is restricted by fair moves.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2020年9月1日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2020年9月1日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员