Current clinical decision-making in oncology relies on averages of large patient populations to both assess tumor status and treatment outcomes. However, cancers exhibit an inherent evolving heterogeneity that requires an individual approach based on rigorous and precise predictions of cancer growth and treatment response. To this end, we advocate the use of quantitative in vivo imaging data to calibrate mathematical models for the personalized forecasting of tumor development. In this chapter, we summarize the main data types available from both common and emerging in vivo medical imaging technologies, and how these data can be used to obtain patient-specific parameters for common mathematical models of cancer. We then outline computational methods designed to solve these models, thereby enabling their use for producing personalized tumor forecasts in silico, which, ultimately, can be used to not only predict response, but also optimize treatment. Finally, we discuss the main barriers to making the above paradigm a clinical reality.


翻译:目前肿瘤学临床决策依靠大量病人的平均数来评估肿瘤状况和治疗结果。然而,癌症呈现出一种内在的不断变化的异质性,需要基于对癌症增长和治疗反应的严格和精确预测的个别方法。为此目的,我们主张使用活体成像定量数据来校准肿瘤发展个人化预测的数学模型。在本章中,我们总结了从常见和新出现的体外医学成像技术中可获得的主要数据类型,以及如何利用这些数据为常见癌症数学模型获取针对病人的参数。我们然后概述了旨在解决这些模型的计算方法,从而使这些模型能够用于在硅进行个性化肿瘤预测,最终不仅用于预测反应,而且用于优化治疗。最后,我们讨论了使上述模型成为临床现实的主要障碍。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
15+阅读 · 2021年2月19日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员