We study joint optimization of service placement, request routing, and CPU sizing in a cooperative MEC system. The problem is considered from the perspective of the service provider (SP), which delivers heterogeneous MEC-enabled delay-sensitive services, and needs to pay for the used resources to the mobile network operators and the cloud provider, while earning revenue from the served requests. We formulate the problem of maximizing the SP's total profit subject to the computation, storage, and communication constraints of each edge node and end-to-end delay requirements of the services as a mixed-integer non-convex optimization problem, and prove it to be NP-hard. To tackle the challenges in solving the problem, we first introduce a design trade-off parameter for different delay requirements of each service, which maintains flexibility in prioritizing them, and transform the original optimization problem by the new delay constraints. Then, by exploiting a hidden convexity, we reformulate the delay constraints into an equivalent form. Next, to handle the challenge of the complicating (integer) variables, using primal decomposition, we decompose the problem into an equivalent form of master and inner sub-problems over the mixed and real variables, respectively. We then employ a cutting-plane approach for building up adequate representations of the extremal value of the inner problem as a function of the complicating variables and the set of values of the complicating variables for which the inner problem is feasible. Finally, we propose a solution strategy based on generalized Benders decomposition and prove its convergence to the optimal solution within a limited number of iterations. Extensive simulation results demonstrate that the proposed scheme significantly outperforms the existing mechanisms in terms of the SP's profit, cache hit ratio, running time, and end-to-end delay.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员