Developing safe autonomous driving systems is a major scientific and technical challenge. Existing AI-based end-to-end solutions do not offer the necessary safety guarantees, while traditional systems engineering approaches are defeated by the complexity of the problem. Currently, there is an increasing interest in hybrid design solutions, integrating machine learning components, when necessary, while using model-based components for goal management and planning. We study a method for building safe by design autonomous driving systems, based on the assumption that the capability to drive boils down to the coordinated execution of a given set of driving operations. The assumption is substantiated by a compositionality result considering that autopilots are dynamic systems receiving a small number of types of vistas as input, each vista defining a free space in its neighborhood. It is shown that safe driving for each type of vista in the corresponding free space, implies safe driving for any possible scenario under some easy-to-check conditions concerning the transition between vistas. The designed autopilot comprises distinct control policies one per type of vista, articulated in two consecutive phases. The first phase consists of carefully managing a potentially risky situation by virtually reducing speed, while the second phase consists of exiting the situation by accelerating. The autopilots designed use for their predictions simple functions characterizing the acceleration and deceleration capabilities of the vehicles. They cover the main driving operations, including entering a main road, overtaking, crossing intersections protected by traffic lights or signals, and driving on freeways. The results presented reinforce the case for hybrid solutions that incorporate mathematically elegant and robust decision methods that are safe by design.


翻译:暂无翻译

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月27日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年6月27日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2018年5月17日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员