The deployment of electromagnetic (EM) induction tools while drilling is one of the standard routines for assisting the geosteering decision-making process. The conductivity distribution obtained through the inversion of the EM induction log can provide important information about the geological structure around the borehole. To image the 3D geological structure in the subsurface, 3D inversion of the EM induction log is required. Because the inversion process is mainly dependent on forward modelling, the use of fast and accurate forward modelling is essential. In this paper, we present an improved version of the integral equation (IE) based modelling technique for general anisotropic media with domain decomposition preconditioning. The discretised IE after domain decomposition equals a fixed-point equation that is solved iteratively with either the block Gauss-Seidel or Jacobi preconditioning. Within each iteration, the inverse of the block matrix is computed using a Krylov subspace method instead of a direct solver. An additional reduction in computational time is obtained by using an adaptive relative residual stopping criterion in the iterative solver. Numerical experiments show a maximum reduction in computational time of 35 per cent compared to solving the full-domain IE with a conventional GMRES solver. Additionally, the reduction of memory requirement for covering a large area of the induction tool sensitivity enables acceleration with limited GPU memory. Hence, we conclude that the domain decomposition method is improving the efficiency of the IE method by reducing the computation time and memory requirement.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员