An expeditious development of graph learning in recent years has found innumerable applications in several diversified fields. Of the main associated challenges are the volume and complexity of graph data. A lot of research has been evolving around the preservation of graph data in a low dimensional space. The graph learning models suffer from the inability to maintain original graph information. In order to compensate for this inability, physics-informed graph learning (PIGL) is emerging. PIGL incorporates physics rules while performing graph learning, which enables numerous potentials. This paper presents a systematic review of PIGL methods. We begin with introducing a unified framework of graph learning models, and then examine existing PIGL methods in relation to the unified framework. We also discuss several future challenges for PIGL. This survey paper is expected to stimulate innovative research and development activities pertaining to PIGL.


翻译:近年来,图表学习的快速发展在多个多样化领域发现了无数应用,其中主要的相关挑战是图形数据的数量和复杂性。围绕在低维空间保存图形数据,已经开展了许多研究。图表学习模型由于无法保持原始图形信息而受到影响。为了弥补这种无能,物理知情图形学习(PIGL)正在出现。PIGL在进行图学时纳入了物理规则,从而能够产生许多潜力。本文对PIGL方法进行了系统审查。我们首先采用一个统一的图表学习模型框架,然后研究与统一框架有关的现有PIGL方法。我们还讨论了PIGL今后面临的一些挑战。预计这份调查文件将促进与PIGL有关的创新研究和开发活动。

1
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
58+阅读 · 2021年5月3日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
58+阅读 · 2021年5月3日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
53+阅读 · 2018年12月11日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员